Hystrix说明
官方文档 [https://github.com/Netflix/Hystrix/wiki]
hystrix是netflix开源的一个容灾框架,解决当外部依赖故障时拖垮业务系统、甚至引起雪崩的问题。
2.1为什么需要Hystrix?
在大中型分布式系统中,通常系统很多依赖(HTTP,hession,Netty,Dubbo等),在高并发访问下,这些依赖的稳定性与否对系统的影响非常大,但是依赖有很多不可控问题:如网络连接缓慢,资源繁忙,暂时不可用,服务脱机等。
当依赖阻塞时,大多数服务器的线程池就出现阻塞(BLOCK),影响整个线上服务的稳定性,在复杂的分布式架构的应用程序有很多的依赖,都会不可避免地在某些时候失败。高并发的依赖失败时如果没有隔离措施,当前应用服务就有被拖垮的风险。
例如:一个依赖``30``个SOA服务的系统,每个服务``99.99``%可用。
`99.99``%的``30``次方 ≈ ``99.7``%` `0.3``% 意味着一亿次请求 会有 ``3``,``000``,``00``次失败` `换算成时间大约每月有``2``个小时服务不稳定.` `随着服务依赖数量的变多,服务不稳定的概率会成指数性提高.`
2.2Hystrix设计理念
想要知道如何使用,必须先明白其核心设计理念,Hystrix基于命令模式,通过UML图先直观的认识一下这一设计模式
可见,Command是在Receiver和Invoker之间添加的中间层,Command实现了对Receiver的封装。那么Hystrix的应用场景如何与上图对应呢?
API既可以是Invoker又可以是reciever,通过继承Hystrix核心类HystrixCommand来封装这些API(例如,远程接口调用,数据库查询之类可能会产生延时的操作)。就可以为API提供弹性保护了。
2.3 Hystrix如何解决依赖隔离
1: Hystrix使用命令模式HystrixCommand(Command)包装依赖调用逻辑,每个命令在单独线程中/信号授权下执行。
2: 可配置依赖调用超时时间,超时时间一般设为比99.5%平均时间略高即可.当调用超时时,直接返回或执行fallback逻辑。
3: 为每个依赖提供一个小的线程池(或信号),如果线程池已满调用将被立即拒绝,默认不采用排队.加速失败判定时间。
4: 依赖调用结果分:成功,失败(抛出异常),超时,线程拒绝,短路。 请求失败(异常,拒绝,超时,短路)时执行fallback(降级)逻辑。
5: 提供熔断器组件,可以自动运行或手动调用,停止当前依赖一段时间(10秒),熔断器默认错误率阈值为50%,超过将自动运行。
6: 提供近实时依赖的统计和监控
2.4Hystrix流程结构解析
流程说明:
1:每次调用创建一个新的HystrixCommand,把依赖调用封装在run()方法中.
2:执行execute()/queue做同步或异步调用.
3:判断熔断器(circuit-breaker)是否打开,如果打开跳到步骤8,进行降级策略,如果关闭进入步骤.
4:判断线程池/队列/信号量是否跑满,如果跑满进入降级步骤8,否则继续后续步骤.
5:调用HystrixCommand的run方法.运行依赖逻辑
5a:依赖逻辑调用超时,进入步骤8.
6:判断逻辑是否调用成功
6a:返回成功调用结果
6b:调用出错,进入步骤8.
7:计算熔断器状态,所有的运行状态(成功, 失败, 拒绝,超时)上报给熔断器,用于统计从而判断熔断器状态.
8:getFallback()降级逻辑.
以下四种情况将触发getFallback调用:
(1):run()方法抛出非HystrixBadRequestException异常。
(2):run()方法调用超时
(3):熔断器开启拦截调用
(4):线程池/队列/信号量是否跑满
8a:没有实现getFallback的Command将直接抛出异常
8b:fallback降级逻辑调用成功直接返回
8c:降级逻辑调用失败抛出异常
9:返回执行成功结果
2.5 熔断器:Circuit Breaker
每个熔断器默认维护10个bucket,每秒一个bucket,每个bucket记录成功,失败,超时,拒绝的状态,
默认错误超过50%且10秒内超过20个请求进行中断拦截.
2.6 Hystrix隔离分析
Hystrix隔离方式采用线程/信号的方式,通过隔离限制依赖的并发量和阻塞扩散.
(1)线程隔离
把执行依赖代码的线程与请求线程(如:jetty线程)分离,请求线程可以自由控制离开的时间(异步过程)。
通过线程池大小可以控制并发量,当线程池饱和时可以提前拒绝服务,防止依赖问题扩散。
线上建议线程池不要设置过大,否则大量堵塞线程有可能会拖慢服务器。
(2)线程隔离的优缺点
- 线程隔离的优点:
- 线程隔离的缺点:
NOTE: Netflix公司内部认为线程隔离开销足够小,不会造成重大的成本或性能的影响。
Netflix 内部API 每天100亿的HystrixCommand依赖请求使用线程隔,每个应用大约40多个线程池,每个线程池大约5-20个线程。
(3)信号隔离
信号隔离也可以用于限制并发访问,防止阻塞扩散, 与线程隔离最大不同在于执行依赖代码的线程依然是请求线程(该线程需要通过信号申请),
如果客户端是可信的且可以快速返回,可以使用信号隔离替换线程隔离,降低开销.
信号量的大小可以动态调整, 线程池大小不可以.
线程隔离与信号隔离区别如下图:
3.接入方式
本文会重点介绍基于服务化项目(thrift服务化项目)的接入方式。
3.1添加hystrix依赖
关于版本问题:由于不同版本Compile Dependencies不同,在使用过程中可以针对具体情况修改版本,具体依赖关系http://mvnrepository.com/artifact/com.netflix.hystrix/hystrix-javanica
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 <hystrix-version>1.4.22</hystrix-version>
<dependency>
<groupId>com.netflix.hystrix</groupId>
<artifactId>hystrix-core</artifactId>
<version>${hystrix-version}</version>
</dependency>
<dependency>
<groupId>com.netflix.hystrix</groupId>
<artifactId>hystrix-metrics-event-stream</artifactId>
<version>${hystrix-version}</version>
</dependency>
<dependency>
<groupId>com.netflix.hystrix</groupId>
<artifactId>hystrix-javanica</artifactId>
<version>${hystrix-version}</version>
</dependency>
<dependency>
<groupId>com.netflix.hystrix</groupId>
<artifactId>hystrix-servo-metrics-publisher</artifactId>
<version>${hystrix-version}</version>
</dependency>
<dependency>
<groupId>com.meituan.service.us</groupId>
<artifactId>hystrix-collector</artifactId>
<version>1.0-SNAPSHOT</version>
</dependency>
3.2引入Hystrix Aspect
application-context.xml文件中1
2
3
4<aop:aspectj-autoproxy/>
<bean id="hystrixAspect"class="com.netflix.hystrix.contrib.javanica.aop.aspectj.HystrixCommandAspect"></bean>
<context:component-scan base-package="com.***.***"/>
<context:annotation-config/>
注意:
1)hystrixAspect的这两行配置一定要和下面的context:component-scan放在同一个文件
2)Hystrix依赖的一些jar需要解决冲突问题,例如guava为15.0版本
3.3统计数据
需要注册plugin,直接从plugin中获取统计数据
新增初始化Bean1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16import com.meituan.service.us.collector.notifier.CustomEventNotifier;
import com.netflix.hystrix.contrib.servopublisher.HystrixServoMetricsPublisher;
import com.netflix.hystrix.strategy.HystrixPlugins;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.InitializingBean;
public class HystrixMetricsInitializingBean {
private static final Logger LOGGER = LoggerFactory.getLogger(HystrixMetricsInitializingBean.class);
publicvoidinit() throwsException {
LOGGER.info("HystrixMetrics starting...");
HystrixPlugins.getInstance().registerEventNotifier(CustomEventNotifier.getInstance());
HystrixPlugins.getInstance().registerMetricsPublisher(HystrixServoMetricsPublisher.getInstance());
}
}
application-context.xml文件中
1 | <bean id="hystrixMetricsInitializingBean"class="com.***.HystrixMetricsInitializingBean"init-method="init"/> |
本文使用同步执行方式,因此注解及方法实现都为同步方式,如果有异步执行、反应执行的需求,可以参考:官方注解说明[https://github.com/Netflix/Hystrix/tree/master/hystrix-contrib/hystrix-javanica]
3.4添加注解
1 | "productStockOpLog", commandKey = "addProductStockOpLog", fallbackMethod = "addProductStockOpLogFallback", (groupKey = |
示例:
1 | "UserGroup", commandKey = "GetUserByIdCommand", (groupKey= |
3.5参数配置
4.参数说明
其他参数可参见 https://github.com/Netflix/Hystrix/wiki/Con
5.性能测试
5.1测试情况
去除Cold状态的第一个异常点后,1-10测试场景的Hystrix平均耗时如上图所示, 可以得出结论:
单个HystrixCommand的额外耗时基本稳定处于0.3ms左右,和线程池大小无关,和client数量无关
hystrix的额外耗时和执行的HystrixCommand数量有关系,随着command数量增多,耗时增加,但是增量较小,没有比例关系
App刚启动时,第一个请求耗时300+ms,随后请求的耗时降低至1ms以下;刚启动的一小段时间内耗时略大于Hot状态时耗时,总体不超过1ms。